RECEIVED-WATER SUPPLY

2009 JUN 30 AM 10: 1!

Construction Battalion Center Public Water Supply Name

BUREAU OF PUBLIC WATER SUPPLY

CALENDAR YEAR 2008 CONSUMER CONFIDENCE REPORT CERTIFICATION FORM

O2H0060
List PWS ID #s for all Water Systems Covered by this CCR

The Federal Safe Drinking Water Act requires each community public water system to develop and distribute a consumer confidence report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Please Answer the Following Questions Regarding the Consumer Confidence Report X Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other) X Advertisement in local paper On water bills Other NCBC website, housing office X' Date customers were informed: 6 / 25 / 2009 CCR was distributed by mail or other direct delivery. Specify other direct delivery methods: Date Mailed/Distributed: / X CCR was published in local newspaper. (Attach copy of published CCR or proof of publication) Seable Courier Date Published: 06/25/2009 CCR was posted in public places. (Attach list of locations) Date Posted: / / CCR was posted on a publicly accessible internet site at the address: www. Cnic. navy. mil/Guifportf X Service - Organizations/Environmental/index, n+m CERTIFICATION I hereby certify that a consumer confidence report (CCR) has been distributed to the customers of this public water system in the form and manner identified above. I further certify that the information included in this CCR is true and correct and is consistent with the water quality monitoring data provided to the public water system officials by the Mississippi State Department of Health, Bureau of Public Water Supply. 4/25/2009 Name/Title (President, Mayor, Owner,

Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215 Phone: 601-576-7518 www.cnic.navy.mil/gulfport

Vol. 46 No.12

Naval Construction Battalion Center, Gulfport, Mississippi

June 25, 2009

2008 NCBC Consumer Confidence Report

Is my water safe? Naval Construction Battalion Center (NCBC) Gulfport has water quality sampling and laboratory analysis performed in accordance with Environmental Protection Agency (EPA) and the Mississippi State Department of Health (MSDH). Last year, as in years past, your tap water met all U.S. EPA and state drinking water health standards. Local water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard. Throughout the year continuous sampling is performed on the drinking water system and the analysis is completed by the state water laboratory

Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immunecompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline at 800.426.4791.

Where does my water come from? NCBC Gulfport receives raw water from the Graham Ferry aquifer. The Graham Ferry aquifer is part of the Miocene aquifer system that consists of multiple layers of sand separated by beds of clay. The thickness of the Miocene aquifer ranges from 1,000 to 4,000 feet. A U.S. Geological Survey study of groundwater in Harrison County found that aquifers deeper than 500 feet were artesian. The groundwater for the NCBC Gulfport water supply is pumped from three wells. Each well is in excess of 700 feet.

Source water assessment and its availability

Our source water assessment was prepared by the MSDH and is available for review. If you would like to review this report, please call the Environmental Division at 228.871.2485.

Why are there contaminants in my drinking water?
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contami-

nants. The presence of contami-

nants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA Safe Drinking Water Hotline (800.426.4791) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved? — The best mechanism to get involved consists of participating in Housing Residence meetings. The most current information about the meetings may be obtained by contacting the Hous-

See WATER page 24

From **WATER** page 17

ing Office at 228-871-2586. The consumer confidence report will not be mailed to NCBC customers, but is posted on the NCBC Environmental weedage at https://www.cnic.navy.mil/Gulfport/Service_Organizations/Environmental/index.htm. The Environmental Division encourages all customers that have concerns or questions to contact us directly.

Monitoring and Reporting of Compliance Data Violations We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. Beginning January 1, 2004, the MSDH required public water systems that use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our water system failed to complete these monitoring requirements in April 2004. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

the compliance period.

** A MESSAGE FROM MSDH CONCERNING RADIOLOG-ICAL SAMPLING **

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclide's beginning January 2007-December 2007. Your

public water supply completed sampling by the scheduled deadline; however, during an audit of the MSHD Radiological Health Laboratory, the EPA suspended analyses and reporting of radiological compliance samples and results until notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

Additional Information for Lead: — If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. NCBC Gulfport is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The MSDH Laboratory offers lead testing for \$10 per sample. Please contact

Water Quality Data Table

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless conservise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Constituent	MCLG or MEDIA	MCL TE or MRDL	Your Want		ege High	Sample Date	Violetica	Typical Source
Deinfermen & Deinfer Characteronicae #15			lereformer i	t nacate	ex for e	merol of m	crobial come	manage)
Calorina (as CD) (ppm)		-	0.61	0.61	0.61	2008	No	Water address treed to contro microber
TTPMS (Total Induksiadasia) (196) Leargana Contamissad	RA	100	TIA9	- XX		2008	No	By-product of draking water distribution
Astinacy (939)	6	6	0.3	0.3	0.5	100	No.	Discharge from the returnism; coronaics; electropics; solder; test addition.
Artenic (cch)		10	0.167	0.16	0.201	2000	260	Execute of patenti ésposits.
Burnou (ppm)	Ť	2	0.007699	0.00 7659	0.609 961	300	No	Excelos of securi deposits
Beryllium (1995)			0,1	0.1	0.1	2008	No	Discharge from electrical, services, and defeate industries
Cadminus (ppts)	Š	3	0.1	0.3	6.1	2008	No	Cerrotica, of galvanized pipes; Excelon of anteral deposits; Discharge from mostly efficients; canoff from maste benefits; canoff from maste benefits; and goldts
Caronium (999)	100	100	0.5	0.3	0.3	2008	No	Eronica of petaral deposits
Cyanida (as Free Ca) (999)	200	300	7	3	3	2008	No	Discharge from plastic and Scribber factories: Discharge from resolvation factories
Phorida (ppm)	4	- 4	0.12	0.10 2	0.13	2006	No	Exercise of proute deposits, Water editions which promotes strong tooks;
Mercury (morganic) (mb)	7	2	0.3	0.2	0.1	3006	No	Erotion er vatural deposits.
Nictos (postered et Niccosci (text)	10	16	0.08	0.08	0.08	2000	Хe	Ruggest from factilities use; Escotion of natural deposits
Ninire (measured as Ninoson) (spm)	1		0.02	NA.		2006	No	Ereston of assure Separits
Salamium (ppb)	50	50	0.5	0.3	0.5	2006	26	Exercise of annual depotits;
Theliane (1999)	9.5	2	0.5	0.5	0.5	300	No	Discharge from electronics, plant.
Volumbe Organic Conne	waatt							
(ppb)	200	300	0.5	NA.		2006	Ne	Districted from moral degreening mass and other factories
1,1,2-Trickbrowhata (ppb)	3	7	0.5	NA		1008	No	Distings from industrial chemical factories

Destaga kon administ chomical factories	Dochary from artile facility feronia:	Discharge from incremed charactel factories	Division from monatrial characters of the control o	Leadings from Services. Leadings from gas contigues to the services of the ser	Declarge from chemical glass and other additional activities	Declares from industrial chemical factories	Discharge from general subsection and coefficients factories	Discharge from percelonal coffessor	Discharge from incustral charactificantes	Tertares from cornering chamical factories	Directorys were rabber suc pieras forcerior: Lesching from landelli:	Discussive from factories and My cloumer	Rectioners from patraleum factories
ž	ķ	2	2	ž	2	Ž	2	2	Ž	Š.	2	SZ.	å
2002	3008	8	936	9900	ă	8	.	88,	8	8	8	3000	2006
an A	ž	MA.	Ž	žĶ.	2	ğ	Į.	22 24	88 8	Ħ	2	3/3	ej.
ŝ	60	S	•• 8	ę.	50	8 2	S	8	6.5	3	3	3	S0000
*	æ			n	••	z	n	80.	S.	α	8	,.	3
r	8		0	0	٥	2	o	307	689	ß	607	co .	.,
1.1-Dickecoultriess (ppb)	2.2.4.7.5.8/cccbqmanns (ppb)	12.D/closed all and a second all a second al	1.3-Dicklongrapus (ppb)	general (thy)	Certee Tetractionity (pps)	civ-1.2- Zichionselbylans (m98)	Delibertariches (pps)	Ethylkeamon (239)	o-Dichlorakeneero (gpb)	2-Dublicraterases (ppo)	Styrens (pps)	Terrationality as (new)	Talmaca (ppm)

Undetected Contaminants

The following contaminants were monitored for, but not detected, in your water.

	MCLG	MCL	Your			
Contaminants	MRDLG	MRDL	Water	<u>Violation</u>	<u>Typical Source</u>	
Disinfectants & Disinfection	By-Products NA	- 60	ND.	No	By-product of drinking w	ser chloroston
Haloscetic Acids (HAA5) (ppb)	na	Çψ	SD	340	D)-tentuci or minutes a	DIG CERTIFICATION (1944

Term	Definition
ppas	pom: parts per militop, or milityrants per liter (lag/L)
ppb	ppb: parts per billion, or microstants per tiles (u.e./L.)
NA	NA: not applicable
ND	ND: Not detected
7/8	NR. Magataring not required, but recommended.

Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCI	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available meanment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a commitment in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, niggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment rechnique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfaction level goal. The level of a drinking water disinfaction below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MPDL	MRDI: Maximum residual disinfectual level. The highest level of a disinfectant allowed in disinking water. There is contincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL Store Assigned Maximum Permissible Level

v.0006000000000000000000000000000000000	230000000000000000000000000000000000000	200000000000000000000000000000000000000
For more in	armenan a	anco contact
TAS MARKET	ios marcan bi	

Environmental Division 2401 Upper Nixon Culfport, MS 39501 238-871-2485

5, 2009
25
lune
Courier
Seabee

Linkage from minimal character factories	Declaration from mated of the factories of the contract of the	Learling from FVC papers Discharge from planes factories	Dicharys from petrolom factoric Dicharys from decaried factories	Trical Source		Commercial of commercial primaries of the commercial deposits.	Corrector of tennescold picarbing extens: Eccins of sment deposits
2	2 2	2	2	Exercis		2	ğ
5002	2008	R	998	* Sample: Exceeding AL		o	Ф
ž	¥100	TH.		Single		2008	2808
\$3	8.8	85	S	Year		ខ	ğ
8	v	e9	30 20	뭬		Д	S
8	e>	•	2	MCLG		ជ	۵
trans. Dominimoskyjene (mili)	Codiconstitutes (22%)	Varyl Calenda (grps)	Nythors (ppm)	Contraring	Integrate Contrations:	Copper - action level as commer tops (ppm)	Land - action land as commercials (gals)

Newsroom

Home > Newsroom > Seabee Courier

2009

- June 25
- June 11
- May 21
- May 7
- April 9
- March 12
- Feb. 26
- Feb. 12
- Jan. 29
- Jan. 15

2008

This Is An Official US Navy Website | 5200 2nd St, Gulfport, MS 39501, USA

2008 NCBC Consumer Confidence Report on Water Quality

Is my water safe? Naval Construction Battalion Center (NCBC) Gulfport has water quality sampling and laboratory analysis performed in accordance with Environmental Protection Agency (EPA) and the Mississippi State Department of Health (MSDH). Last year, as in years past, your tap water met all U.S. EPA and state drinking water health standards. Local water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard. Throughout the year continuous sampling is performed on the drinking water system and the analysis is completed by the state water laboratory.

Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800.426.4791).

Where does my water come from? NCBC Gulfport receives raw water from the Graham Ferry aquifer. The Graham Ferry aquifer is part of the Miocene aquifer system that consists of multiple layers of sand separated by beds of clay. The thickness of the Miocene aquifer ranges from 1,000 to 4,000 feet. A U.S. Geological Survey study of groundwater in Harrison County Page 1 of 4

found that aguifers deeper than 500 feet were artesian. The groundwater for the NCBC Gulfport water supply is pumped from three wells. Each well is in excess of 700 feet. Source water assessment and its

availability

Our source water assessment was prepared by the MSDH and is available for review. If you would like to review this report, please call the Environmental Division at 228.871.2485.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA Safe Drinking Water Hotline (800.426.4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. How can I get involved? - The best mechanism to get involved consists of participating in Housing Residence meetings. The most current information about the meetings may be obtained by contacting the Housing Office at 228-871-2586. The consumer confidence report

will not be mailed to NCBC customers, but is posted on the NCBC Environmental webpage at https://www.cnic.navy.mil/Gulfport/Service_Organizations/Environmental/index.htm. The Environmental Division encourages all customers that have concerns or questions to contact us directly. Conservation Tips: - Did you know that the average U.S. household uses approximately 350 gallons of water per day? Luckily, there are many low-cost or no-cost ways to conserve water. Water your lawn at the least sunny times of the day. Fix toilet and faucet leaks. Take short showers - a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. Turn the faucet off while brushing your teeth and shaving; 3-5 gallons go down the drain per minute. Teach your kids about water conservation to ensure a future generation that uses water wisely.

Monitoring and Reporting of Compliance Data Violations -

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our dinking water meets health standards. Beginning January 1, 2004, the MSDH required public water systems that use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our water system failed to complete these monitoring requirements in April 2004. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

** A MESSAGE FROM MSDH CONCERNING RADIOLOGI- CAL SAMPLING **

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclide's beginning January 2007-December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the MSHD Radiological Health Laboratory, the EPA suspended analyses and reporting of radiological compliance samples and results until notice.

Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

Additional Information for Lead:

 If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. NCBC Gulfport is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at

http://www.epa.gov/safewater/le ad. The MSDH Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582.

See WATER page 16 | 15

Water Quality Data Table

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

	MCLG or	MCL, TI, or	Your		nge	Sample		
Contaminants	MEDIG	MRDL	Water	Low	High	Date	Violation	Typical Source
Disimfectants & Disimfec	tion By-Pro	ducts						
(There is communing exid	lence that add	linoz of a c	lisizfectant i	t Decessi	ary for co	entrol of mi	crobal costa	minants.)
Chikerine (as Cl2) (ppm)	4	4	0.61	0.61	0.61	2008	No	Water additive used to control microbes
TTEMs [Total Tribuloccethanes] (ppb)	NA.	34.1	11.09	NA	***************	200,6	No	By-product of drinking water disinfection
Inorganic Contaminant								
Antimony (ppb)	б	6	0.5	Q.5	Q.5	2008	No	Discharge from fire retardants; ceramics; electronics; solder; test addition.
Arsanic (ppb)	0	10	0.167	0.16	0.201	2000	No	Ereston of natural deposits:
Ватип (ррш)	2	2	0.007699	0.00 7 699	0.009 963	2008	No	Erosion of natural deposits
Beryllium (ppb)	*	4	0.1	0.1	0.1	2008	No	Discharge from electrical, zerospace, and defense industries
Cedmium (ppb)	5	\$	0.1	0.1	0.1	2006	No	Corresion of galvanized pipes; Eresion of natural deposits; Discharge from metal refinences; runoff from waste batteries and points
Chromium (ppb)	100	100	0.5	0.5	0.5	2008	No	Eresten of natural deposits
Cyanide (as Free Cz.] (ppb)	200	200	5	5	5	2005	No	Discharge from plastic and fertilizer factories; Discharge from steel metal factories
Flaorida (ppm)	4	4	0.12	0.10 2	0.12	2008	No	Ereston of natural deposits; Water additive which promotes strong teeth;
Mercury (inorganic)	3	2	0.2	0.2	0.2	2008	No	Erosion of natural deposits;
Nitrate [meastred as Nitrogett] (pptt)	10	20	0.08	0.08	0.08	2008	Ne	Runoff from fertilizer use; Erosion of natural deposits
Nitrite (measured as Nitrogen) (ppm)	1	ì	0.02	NA	***************************************	2008	No	Ereston of nanual deposits
Sələnium (ppb)	50	50	0.5	0.5	0.5	2008	No	Ereston of natural deposits:
Thallium (ppb)	0.5	2	0.5	0.5	0.5	2008	No	Discharge from electronics, glass,
Volanie Organic Contan	ninant:							Ames,
I,I,I-Trichlorcethane (ppb)	200	200	0.3	NA		2008	No	Discharge from metal degressing sites and other factories
1,1,2-Trickloreethans (ppb)	3	5	0.3	NA	(A. (C.). (A. (2006	No	Discharge from industrial chemical factories See

Page 2 of 4

See WATER page 17 16

1,1-Dichlorcethylene	7	7	0.5	NA	2008	No	Discharge from inclustrial
(ppb) 1.2.4-Trichlerebenzene	70	70	0.5	NA	2008	No	chemical factories Discharge from textile-
(ppb) 1,2-Dichlorcethane (ppb)	0	5	0.5	NA	2008	No	finishing factories Discharge from industrial chemical factories
1.2-Dichlotopropans (ppb)	0	\$	0.5	NA	2008	No	Discharge from industrial chemical factories
Ведгене (БЬр)	0	3	0.5	NA	2003	No	Discharge from factories: Leaching from gas storage tanks and landfills
Carbon Tetrachlonds (ppb)	0	3	0.5	NA	2005	No	Discharge from chemical plants and other industrial activities
cis-1,2- Dichloroethylene (ppb)	70	70	0.5	NA	2008	No	Discharge from industrial chemical factories
Dichloromethane (ppb)	0	5	0.5	NA	2008	No	Discharge from phermaceutical and chemica factories
Ethylbenzene (ppb)	700	700	0.5	NA	2008	No	Discharge from petroleum refineries
o-Dichlerobenzene (ppb)	600	690	0.5	NA	2008	No	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	0.5	NA	2008	Ko	Discharge from industrial chemical factories
Styrens (ppb)	100	109	0.5	NA	2008	No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachiorcethylene (ppb)	0	\$	0.5	NA	2008	No	Discharge from factories and dry cleaners
Tolmeze (ppm)	ì	3	0.0005	NA	2008	No	Discharge from petroleum factories
trans-1,2- Dicholoroethylene (ppb)	100	100	Q.5	NA	2008	No	Discharge from industrial chemical factories
Trichleccethylene (ppb)	0	\$	0.5	NA	2008	No	Discharge from metal degressing sites and other factories
Vinyl (Monde (ppb)	9	2	0.5	NA	2008	No	Leaching from PVC piping; Discharge from plastics factories
Nylenes (ppm)	10	10	0.5	NA	2008	No	Discharge from petrolemm factories, Discharge from chemical factories

<u>Contaminants</u>	MCLG	盐	Your <u>Water</u>	Sample <u>Date</u>	# Sample: Exceeding AL	Exceed: <u>AL</u>	Typical Source
Inorganic Contaminant:		Parameter Species	a constituit suoi suoi				
Copper - action level at consumer teps (ppm)	1.3	1.3	0.5	2008	0	1/0	Corresson of household plumbing systems; Eresson of natural deposits
Lend - action level at consumer taps (ppb)	٥	.15	6	2008	Ō	No	Corresion of household plumbing systems; Eresion of natural deposits

Undetected Contaminants

The following contaminants were monitored for, but not detected, in your water.

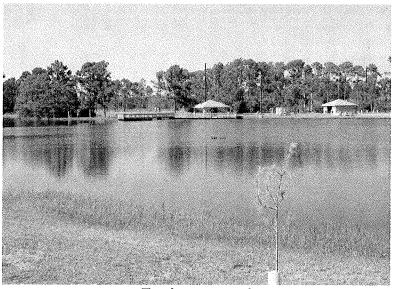
Haloacetic Acids (HAA5)	NA NA	60	ND	No	By-product of drinking water chlorination
Contaminants Disinfectants & Disinfection	MRDLG By-Products	MRDL	<u>Water</u>	<u>Violation</u>	Typical Source
	MCLG or	MCL or	Your		

Term	Definition
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (#g/L)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
17	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information on the NCBC 2008 Consumer Confidence Report regarding the Annaul Drinking Water Quality Report, please contact:

Lisa Noble 2401 Upper Nixon Gulfport, MS 39501 (228) 871-2485 lisa.noble@navy.mil



Programs

Home > Programs > Environmental

EnvironmentalGood Environmental Stewardship Promotes Healthy Recreation

Building: 117T

Hours: 7:30 a.m. - 4:00 p.m.

Please click here to view page of maps, then select Building 117T (Temp)Environmental

Additional links for Environmental are located on the left under Menu.

2008 NCBC Consumer Confidence Report

Environmental Mission Statement

The Environmental Division at CBC, Gulfport is committed to enabling war fighter readiness in a manner that is protective of human health and the environment. This commitment extends to all activities operating onboard NCBC Gulfport. Each individual, whether military, civilian or private contractor, regardless of rank or grade, is responsible for performing their duties in a manner that protects the environment, prevents pollution and exercises proper stewardship of our natural and cultural resources.

RECEIVED-WATER SUPPLY

2009 JUN 30 AM 10: 12

2008 NCBC Consumer Confidence Report

Is my water safe?

Naval Construciton Battalion Center (NCBC) Gulfport has water quality sampling and laboratory analysis performed in accordance with Environmental Protection Agency (EPA) and the State Department of Health. Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard. Throughout the year continuous sampling is performed on the drinking water system and the analysis is completed by the state water laboratory.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

NCBC Gulfport receives raw water from the Graham Ferry aquifer. The Graham Ferry aquifer is part of the Miocene aquifer system that consists of multiple layers of sand separated by beds of clay. The thickness of the Miocene aquifer ranges from 1,000 to 4,000 feet. A U.S. Geological Survey study of groundwater in Harrison County found that aquifers deeper than 500 feet were artesian. The groundwater for the NCBC Gulfport water supply is pumped from three wells. Each well is in excess of 700 feet.

Source water assessment and its availability

Our source water assessment was prepared by the Mississippi State Department of Health and is available for review. If you would like to review this report, please call the Environmental Office at 228.871.2485.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems, and radioactive contaminants, which

can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

The best mechanism to get involved consists of participating in Housing Residence meetings. The most current information about the meetings may be obtained by contacting the Housing Office at 228-871-2586. The consumer confidence report will not be mailed to NCBC customers, but is posted on the NCBC Environmental webpage at

https://www.cnic.navy.mil/Gulfport/Service_Organizations/Environmental/index.htm. The Environmental Division encourages all customers that have concerns or questions to contact us directly.

Conservation Tips

Did you know that the average U.S. household uses approximately 350 gallons of water per day? Luckily, there are many low-cost or no-cost ways to conserve water. Water your lawn at the least sunny times of the day. Fix toilet and faucet leaks. Take short showers - a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. Turn the faucet off while brushing your teeth and shaving; 3-5 gallons go down the drain per minute. Teach your kids about water conservation to ensure a future generation that uses water wisely.

Monitoring and Reporting of Compliance Data Violations

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our dinking water meets health standards. Beginning January 1, 2004, the Mississippi State Department of Health (MSDH) required public water systems that use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our water system failed to complete these monitoring requirements in April 2004. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

***** A MESSAGE FROM MSHD CONCERNING RADIOLOGICAL SAMPLING *****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclide's beginning January 2007-December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health (MSHD) Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. NCBC Gulfport is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi state Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582.

Water Quality Data Table

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

	MCLG	MCL,						
<u>Contaminants</u>	or MRDLG	TT, or MRDL	Your <u>Water</u>	Ra <u>Low</u>	nge <u>High</u>	Sample <u>Date</u>	<u>Violation</u>	Typical Source
Disinfectants & Disinfec	tion By-Pro	ducts			ikas magamatan kan		to se me Duitelen i veneratere	
(There is convincing evid	ence that add	lition of a c	lisinfectant i	s necess	ary for co	ontrol of mi	crobial conta	minants.)
Chlorine (as Cl2) (ppm)	4	4	0.61	0.61	0.61	2008	No	Water additive used to control microbes
TTHMs [Total Trihalomethanes] (ppb)	NA	80	11.09	NA		2008	No	By-product of drinking water disinfection
Inorganic Contaminant	;							
Antimony (ppb)	6	6	0.5	0.5	0.5	2008	No	Discharge from fire retardants; ceramics; electronics; solder; test addition.
Arsenic (ppb)	0	10	0.167	0.16	0.201	2000	No	Erosion of natural deposits;
Barium (ppm)	2	2	0.007699	0.00 7699	0.009 965	2008	No	Erosion of natural deposits
Beryllium (ppb)	4	4	0.1	0.1	0.1	2008	No	Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	0.1	0.1	0.1	2008	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	100	100	0.5	0.5	0.5	2008	No	Erosion of natural deposits
Cyanide [as Free Cn] (ppb)	200	200	5	5	5	2008	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride (ppm)	4	4	0.12	0.10 2	0.12	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth;
Mercury [Inorganic] (ppb)	2	2	0.2	0.2	0.2	2008	No	Erosion of natural deposits;

Nitrate [measured as Nitrogen] (ppm)	10	10	0.08	0.08	0.08	2008	No	Runoff from fertilizer use; Erosion of natural deposits
Nitrite [measured as Nitrogen] (ppm)	1	1	0.02	NA		2008	No	Erosion of natural deposits
Selenium (ppb)	50	50	0.5	0.5	0.5	2008	No	Erosion of natural deposits;
Thallium (ppb)	0.5	2	0.5	0.5	0.5	2008	No	Discharge from electronics, glass,
Volatile Organic Contam	inants							
1,1,1-Trichloroethane (ppb)	200	200	0.5	NA		2008	No	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane (ppb)	3	5	0.5	NA		2008	No	Discharge from industrial chemical factories
1,1-Dichloroethylene (ppb)	7	7	0.5	NA		2008	No	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene (ppb)	70	70	0.5	NA		2008	No	Discharge from textile- finishing factories
1,2-Dichloroethane (ppb)	0	5	0.5	NA	•	2008	No	Discharge from industrial chemical factories
I,2-Dichloropropane (ppb)	0	5	0.5	NA		2008	No	Discharge from industrial chemical factories
Benzene (ppb)	0	5	0.5	NA		2008	No	Discharge from factories; Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	5	0.5	NA		2008	No	Discharge from chemical plants and other industrial activities
cis-1,2- Dichloroethylene (ppb)	70	70	0.5	NA		2008	No	Discharge from industrial chemical factories
Dichloromethane (ppb)	0	5	0.5	NA		2008	No	Discharge from pharmaceutical and chemical factories
Ethylbenzene (ppb)	700	700	0.5	NA		2008	No	Discharge from petroleum refineries
o-Dichlorobenzene (ppb)	600	600	0.5	NA		2008	No	Discharge from industrial chemical factories
p-Dichlorobenzene ppb)	75	75	0.5	NA		2008	No	Discharge from industrial chemical factories
Styrene (ppb)	100	100	0.5	NA		2008	No	Discharge from rubber and plastic factories; Leaching from landfills
Fetrachloroethylene (ppb)	0	5	0.5	NA		2008	No	Discharge from factories and dry cleaners
Foluene (ppm)	1	1	0.0005	NA		2008	No	Discharge from petroleum factories
rans-1,2- Dicholoroethylene (ppb)	100	100	0.5	NA		2008	No	Discharge from industrial chemical factories
richloroethylene (ppb)	0	5	0.5	NA		2008	No	Discharge from metal degreasing sites and other factories
Vinyl Chloride (ppb)	0	2	0.5	NA		2008	No	Leaching from PVC piping; Discharge from plastics factories
Xylenes (ppm)	10	10	0.5	NA		2008	No	Discharge from petroleum factories; Discharge from chemical factories

<u>Contaminants</u>	MCLG	<u>AL</u>	Your <u>Water</u>	Sample <u>Date</u>	# Samples Exceeding AL	Exceeds <u>AL</u>	Typical Source
Inorganic Contaminants		especies y accommon popular		en nepreprinte de proprieta en 1		e e santo e como e e e e e e e e e e e e e e e e e e	
Copper - action level at consumer taps (ppm)	1.3	1.3	0.5	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	6	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Undetected Contaminants

The following contaminants were monitored for, but not detected, in your water.

	MCLG or	MCL or	Your		
Contaminants Disinfectants & Disinfection I	MRDLG By-Products	MRDL	<u>Water</u>	<u>Violation</u>	Typical Source
Haloacetic Acids (HAA5) (ppb)	NA	60	ND	No	By-product of drinking water chlorination

Unit Descriptions	
<u>Term</u>	<u>Definition</u>
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μg/L)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Important Drinking Water Def	initions
<u>Term</u>	<u>Definition</u>
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Lisa Noble Address: 2401 Upper Nixon Gulfport, MS 39501 228-871-2485 228-871-3116 lisa.noble@navy.mil

RECEIVED-WATER SUPPLY

Noble, Lisa L CIV NAVFAC SE, PWD Gulfport

2009 JUN 30 AM 10: 12

From:

Jeannie Stacks [JStacks@bbcgrp.com]

Sent:

Thursday, June 25, 2009 1:30 PM

To:

Noble, Lisa L CIV NAVFAC SE, PWD Gulfport

Subject:

RE: Drinking Water Annual Consumer Confidence Report

Will do. Thank you!

Jeannie Stacks

Resident Specialist/LifeWorks Coordinator Balfour Beatty Communities NCBC Gulfport | 3502 East Eighth Street | Building 452 | NCBC Gulfport, MS | 39501 P: 228-863-0424 | F: 228-863-0428

This e-mail message is intended only for the personal use of the recipient(s) named above. This message may be privileged and confidential. If you are not an intended recipient you may not review, copy or distribute this message. If you have received this message in error, please notify us immediately by e-mail and delete the original message. Thank you.

----Original Message----

From: Noble, Lisa L CIV NAVFAC SE, PWD Gulfport [mailto:lisa.noble@navv.mil]

Sent: Thursday, June 25, 2009 2:29 PM

To: Jeannie Stacks

Subject: Drinking Water Annual Consumer Confidence Report

Jeannie,

Attached is the Drinking Water Annual Consumer Confidence Report. It was published in the Seabee Courier, 25 June, and is available on the base website, https://www.cnic.navy.mil/Gulfport/Service_Organizations/Environmental/index.htm. You may also want to publish in the Military Housing Newsletter. Attached is a copy. Regards, Lisa

Lisa L. Noble Air/Water Program Manager Publics Works, Environmental Dept NCBC Gulfport 228-871-2485 DSN 868

DEPARTMENT OF THE NAVY APPROVED

NAVAL CONASTRUCTION BATTALION CENTER 4902 MARVIN SHIELDS BLVD GULFPORT, MS 39501-5001

IN REPLY REFER TO: June 26, 2009

Mrs. Karen Walters Compliance and Enforcement Branch Mississippi State Department of Health P.O. Box 1700 Jackson, MS 39215-1700

RE: Notice of Monitoring Violation – Maximum (Chlorine) Residual Disinfectant Level (MRDL)

Mrs. Walters,

The U.S. Navy, Naval Construction Battalion Center (NCBC), PWS ID # 0240060, has complied with reporting requirement for the Notice of Monitoring Violation during Apr 2004. Public notice delivery Option 2, delivery notice through Consumer Confidence Report, was selected and is attached for your verification. The Consumer Confidence Report was published in the base paper, Seabee Courier, available on the NCBC Seabee Courier and Environmental Websites, and posting at the military family housing office. If you have questions or require additional information, please contact Lisa Noble at 228-871-2485 or by email at lisa.noble@navy.mil.

Sincerely,

Jeff Muehlmann

NCBC Environmental Director

Attachments:

- 1. Confirmation of Notice
- 2. Calendar Year 2008 Consumer Confidence Report Certification Form
- 3. Consumer Confidence Report

CONFIRMATION OF NOTICE

Community (C)

Mississippi State Department of Health Bureau of Public Water Supply P O Box 1700 Jackson, Mississippi 39215-1700

PWS ID #: 0240060	10 , 5		
PWS1D#: 0240000	10 , , ,		
For Violation: Maximum Chlorin	<u>e) Kusidual D</u>	isin Fectant	Level (MRDL)
Occurring on: Apr 2004			
The public water system indicated above he consumers in accordance with the delivery, method(s) indicated below:			
Notice distributed by(hand or direction)		on	
(hand or dire	ect delivery)		(date)
Notice distributed by (mail, as a separate notice	e or included with the	on	(date)
Notice distributed by Consumer Conf	dence Reported and if applicable)	t on 9	une 25, 2009 (date)
(Signature)	Environmental (Title)	Director_	(0 26 0 G

RECEIVED-WATER SUPPLY 2009 JUN 30 AM 10: 14

Construction Batalion Center

BUREAU OF PUBLIC WATER SUPPLY

CALENDAR YEAR 2008 CONSUMER CONFIDENCE REPORT CERTIFICATION FORM

D2H0060
List PWS ID #s for all Water Systems Covered by this CCR

The Federal Safe Drinking Water Act requires each community public water system to develop and distribute a consumer confidence report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Please Answer the Following Questions Regarding the Consumer Confidence Report Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other) X Advertisement in local paper On water bills Other NCBC Website, housing office Date customers were informed: 6 / 25 / 2009 CCR was distributed by mail or other direct delivery. Specify other direct delivery methods: Date Mailed/Distributed: CCR was published in local newspaper. (Attach copy of published CCR or proof of publication) X Name of Newspaper: Date Published: 06/85/2009 CCR was posted in public places. (Attach list of locations) Date Posted: / / CCR was posted on a publicly accessible internet site at the address: www. Cnic. navy. mil/Guifport/ X Service - Organizations/Environmental/index. htm I hereby certify that a consumer confidence report (CCR) has been distributed to the customers of this public water system in the form and manner identified above. I further certify that the information included in this CCR is true and correct and is consistent with the water quality monitoring data provided to the public water system officials by the Mississippi State Name/Title (President, Mayor, Owner, etc.) Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215 Phone: 601-576-7518

Newsroom

Home > Newsroom > Seabee Courier

2009

- June 25
- June 11
- May 21
- May 7
- April 9
- March 12
- Feb. 26
- Feb. 12
- Jan. 29
- Jan. 15

2008

This Is An Official US Navy Website | 5200 2nd St, Gulfport, MS 39501, USA

2008 NCBC Consumer Confidence Report on Water Quality

Is my water safe? Naval Construction Battalion Center (NCBC) Gulfport has water quality sampling and laboratory analysis performed in accordance with Environmental Protection Agency (EPA) and the Mississippi State Department of Health (MSDH). Last year, as in years past, your tap water met all U.S. EPA and state drinking water health standards. Local water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard. Throughout the year continuous sampling is performed on the drinking water system and the analysis is completed by the state water laboratory.

Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800.426.4791).

Where does my water come from? NCBC Gulfport receives raw water from the Graham Ferry aquifer. The Graham Ferry aquifer is part of the Miocene aquifer system that consists of multiple layers of sand separated by beds of clay. The thickness of the Miocene aquifer ranges from 1,000 to 4,000 feet. A U.S. Geological Survey study of groundwater in Harrison County age 1 of 4

found that aquifers deeper than 500 feet were artesian. The groundwater for the NCBC Gulfport water supply is pumped from three wells. Each well is in excess of 700 feet.

Source water assessment and its availability

Our source water assessment was prepared by the MSDH and is available for review. If you would like to review this report, please call the Environmental Division at 228.871.2485.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA Safe Drinking Water Hotline (800.426.4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. How can I get involved? - The best mechanism to get involved consists of participating in Housing Residence meetings. The most current information about the meetings may be obtained by contacting the Housing Office at 228-871-2586. The consumer confidence report

will not be mailed to NCBC customers, but is posted on the NCBC Environmental webpage at https://www.cnic.navy.mil/Gulfport/Service_Organizations/Environmental/index.htm. The **Environmental Division encourages** all customers that have concerns or questions to contact us directly. Conservation Tips: - Did you know that the average U.S. household uses approximately 350 gallons of water per day? Luckily, there are many low-cost or no-cost ways to conserve water. Water your lawn at the least sunny times of the day. Fix toilet and faucet leaks. Take short showers - a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. Turn the faucet off while brushing your teeth and shaving; 3-5 gallons go down the drain per minute. Teach your kids about water conservation to ensure a future generation that uses water

Monitoring and Reporting of

Compliance Data Violations -We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our dinking water meets health standards. Beginning January 1, 2004, the MSDH required public water systems that use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our water system failed to complete these monitoring requirements in April 2004. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

** A MESSAGE FROM MSDH CONCERNING RADIOLOGI-

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclide's beginning January 2007-December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the MSHD Radiological Health Laboratory, the EPA suspended analyses and reporting of radiological compliance samples and results until notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public

CAL SAMPLING **

Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

Additional Information for Lead:

- If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. NCBC Gulfport is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at

http://www.epa.gov/safewater/le ad. The MSDH Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582

See WATER page 16 15

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Contaminants	MCLG or MRDLG	MCL, TT, or MRDL	Your		zge	Sample		
	Silver of the Control	e de manda de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición dela composición de la composición dela composici	<u>Water</u>	LOW	High	Date	<u>Violation</u>	Typical Source
Disinfectants & Disinfec								
(There is conventing evid	lence that edd	lines of a	disunfectant i	s Decessi	ury for co	outrol of mi	crobtal cours	erinants.)
Chiotine (as Cl2) (ppm)	4	4	0.61	0.61	0.61	2008	No	Water additive used to control microbes
TTHMs (Total Tribulomethumes) (ppb)	NA	80	11.09	NA	***************************************	2000	No	By-product of drinking water disinfection
Inorganic Contaminant	\$							
Antimony (ppb)	б	đ	0.3	0.5	0.5	2006	No	Discharge from fire retardants; ceramics; electronics; solder; test addition.
Amenic (ppb)	0	10	0.167	0.16	0.201	2000	No	Ereston of natural deposits:
Вычию (ррш)	2	2	0.007699	0.00 7699	0.009 965	2008	No	Eresion of natural deposits
Beryllium (ppb)	4	4	0.1	0.1	0.1	2008	No	Discharge from electrical, zerospace, and defense industries
Cadmium (ppb)	5	5	0.1	0.1	0.1	2006	No	Corresion of galvanized pipes; Erosion of natural deposits; Distharge from motal refineries; ramoff from waste betteries and paints
Caromium (ppb)	100	100	0.5	0.5	0.5	2008	No	Ereston of nanual deposits
Cyanide [as Free Cn] (ppb)	200	200	5	5	5	2008	Ne	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fhonds (ppm)	4	4	0.12	0.10 2	0.12	2006	No	Ereston of natural deposits; Water additive which promotes strong teeth;
Mercury (increasure) (ppb)	2	2	0,2	0.2	0.2	2008	No	Ereston of natural deposits:
Nitrate [measured as Nitrogen] (ppm)	10	10	0.08	0.08	0.08	2008	No	Runoff from feetilizer use; Erosion of natural deposits
Nitrite (measured as Nitrogen) (ppm)	1	1	0.02	NA		2008	No	Eresion of nanual deposits
Selenium (ppb)	50	50	0,5	0.5	Q.5	2008	No	Ereston of natural deposits.
Thallium (1906)	0.5	2	0.5	0.3	0.5	2008	No	Discharge from electronics. glass.
Volatile Organic Contan	CONTRACTOR OF STREET							
l, l, l-Trichhoroethaus (ppb)	200	200	0.3	NA	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2006	No	Discharge from metal degreasing sites and other factories
1,1,2-Trichlorcethane (pp8)	3	\$	0.5	NA		2008	No	Discharge from industrial chemical factories See V

Page 2 of 4

See WATER page 17 16

1.1-Dichloroothylene	7	7	0.5	NA	2008	No	Discharge from undustrial
(ppb)			* - "				chemical factories
1,2,4-Trichlerebenzene (ppb)	70	70	Q.5	NA	2008	No	Discharge from textile- finishing factories
1,2-Dichlorcethane (ppb)	0	\$	0.5	NA	2008	No	Discharge from industrial chemical factories
1,2-Dichlocopropana (ppb)	0	\$	0.5	NA	2008	No	Discharge from industrial chemical factories
Benzene (ppb)	0	\$	0.5	NA	2003	No	Discharge from factories: Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	\$	0.5	NA	2008	No	Discharge from chemical plants and other industrial activities
cis-1,2- Dichlorosthylens (ppb)	70	70	0.5	NA	2008	No	Discharge from industrial chemical factories
Dichloromethene (ppb)	0	\$	0.5	NA	2008	No	Discharge from pharmaceutical and chemical factories
Ethylbenzene (ppb)	700	700	0.5	NA	2008	No	Discharge from petroleum refineries
o-Dichlerobenzene (ppb)	600	600	0,5	NA	2008	No	Discharge from industrial chemical factories
p-Dichlorobenzana (ppb)	75	75	Q.5	NA	2005	No	Discharge from industrial chemical factories
Styrene (ppb)	:00	100	0.5	NA	2008	No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachloroethylene (ppb)	0	\$. 0.5	NA	2008	No	Discharge from factories and dry cleaners
Tolneza (ppm)	ì	1	0.0005	NA	2008	No	Discharge from peroleum factories
trans-1,2- Dicholorosthylene (ppb)	100	100	0.5	NA	2008	No	Discharge from industrial chemical factories
Trichlorcothylono (ppb)	0	5	0.5	NA	2008	No	Discharge from metal degressing sites and other factories
Vinyl Chloride (ppb)	0	2	0.5	NA	2008	No	Leaching from PVC piping: Discharge from plastics factories
Kylenes (ppm)	19	10	Q.5	NA	2008	No	Discharge from petroleum factories, Discharge from chemical factories

Contaminants	MCLG	丛	Your <u>Water</u>	Sample <u>Date</u>	# Sample: Exceeding AL	Exceeds <u>AL</u>	Typical Source
Inorganic Contaminants		Market Service		Control Carlo Control Carlo			
Copper - action level at consumer taps (ppm)	2.3	1.3	0.5	2008	Ç	No	Corresson of household plumbing systems, Eresson of natural deposits
Lead - action level at consumer taps (ppb)	٥	15	6	2008	0	No	Correston of household plumbing systems; Erosion of natural deposits

Undetected Contaminants

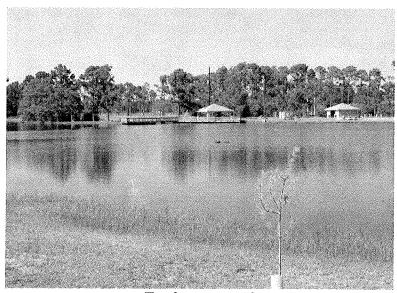
The following contaminants were monitored for, but not detected, in your water.

Haloacetic Acids (HAAS)	NA	60	ND	No	By-product of dnuking water chlorination
Disinfectants & Disinfection	By-Products			Marie Construction of Construction	
Contaminants	MRDLG	MRDL	<u>Water</u>	<u>Violation</u>	Typical Source
	or	or	Your		
	MCLG	MCL			

Term	Defunition
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (ug/L)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Term	Definition .
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contominant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information on the NCBC 2008 Consumer Confidence Report regarding the Annaul Drinking Water Quality Report, please contact:


Lisa Noble 2401 Upper Nixon Gulfport, MS 39501 (228) 871-2485 lisa.noble@navy.mil

Programs

Home > Programs > Environmental

EnvironmentalGood Environmental Stewardship Promotes Healthy Recreation

Building: 117T

Hours: 7:30 a.m. - 4:00 p.m.

Please click here to view page of maps, then select Building 117T (Temp)Environmental

Additional links for Environmental are located on the left under Menu.

2008 NCBC Consumer Confidence Report

Environmental Mission Statement

The Environmental Division at CBC, Gulfport is committed to enabling war fighter readiness in a manner that is protective of human health and the environment. This commitment extends to all activities operating onboard NCBC Gulfport. Each individual, whether military, civilian or private contractor, regardless of rank or grade, is responsible for performing their duties in a manner that protects the environment, prevents pollution and exercises proper stewardship of our natural and cultural resources.

RECEIVED-WATER SUPPLY 2009 JUN 30 AM 10: 14

2008 NCBC Consumer Confidence Report

Is my water safe?

Naval Construction Battalion Center (NCBC) Gulfport has water quality sampling and laboratory analysis performed in accordance with Environmental Protection Agency (EPA) and the State Department of Health. Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard. Throughout the year continuous sampling is performed on the drinking water system and the analysis is completed by the state water laboratory.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

NCBC Gulfport receives raw water from the Graham Ferry aquifer. The Graham Ferry aquifer is part of the Miocene aquifer system that consists of multiple layers of sand separated by beds of clay. The thickness of the Miocene aquifer ranges from 1,000 to 4,000 feet. A U.S. Geological Survey study of groundwater in Harrison County found that aquifers deeper than 500 feet were artesian. The groundwater for the NCBC Gulfport water supply is pumped from three wells. Each well is in excess of 700 feet.

Source water assessment and its availability

Our source water assessment was prepared by the Mississippi State Department of Health and is available for review. If you would like to review this report, please call the Environmental Office at 228.871.2485.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and herbicides may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems, and radioactive contaminants, which

can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

The best mechanism to get involved consists of participating in Housing Residence meetings. The most current information about the meetings may be obtained by contacting the Housing Office at 228-871-2586. The consumer confidence report will not be mailed to NCBC customers, but is posted on the NCBC Environmental webpage at

https://www.cnic.navy.mil/Gulfport/Service_Organizations/Environmental/index.htm. The Environmental Division encourages all customers that have concerns or questions to contact us directly.

Conservation Tips

Did you know that the average U.S. household uses approximately 350 gallons of water per day? Luckily, there are many low-cost or no-cost ways to conserve water. Water your lawn at the least sunny times of the day. Fix toilet and faucet leaks. Take short showers - a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. Turn the faucet off while brushing your teeth and shaving; 3-5 gallons go down the drain per minute. Teach your kids about water conservation to ensure a future generation that uses water wisely.

Monitoring and Reporting of Compliance Data Violations

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our dinking water meets health standards. Beginning January 1, 2004, the Mississippi State Department of Health (MSDH) required public water systems that use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our water system failed to complete these monitoring requirements in April 2004. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

***** A MESSAGE FROM MSHD CONCERNING RADIOLOGICAL SAMPLING *****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclide's beginning January 2007-December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health (MSHD) Radiological Health Laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. NCBC Gulfport is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi state Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582.

Water Quality Data Table

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

	MCLG	MCL,						
<u>Contaminants</u>	or <u>MRDLG</u>	TT, or MRDL	Your <u>Water</u>	Ra <u>Low</u>	inge <u>High</u>	Sample <u>Date</u>	<u>Violation</u>	Typical Source
Disinfectants & Disinfec	ction By-Pro	ducts	priesia a la travalgue de la como	gentine of the star to	Activities	No se prilipas at calcimisaciones a	Makana in Propasition in the proper	no mil occión server i colorient (servicio de coloriente de servicio de la coloriente de servicio de s
(There is convincing evid	ence that add	lition of a c	lisinfectant i	s necess	ary for co	ontrol of mi	crobial conta	minants.)
Chlorine (as Cl2) (ppm)	4	4	0.61	0.61	0.61	2008	No	Water additive used to control microbes
TTHMs [Total Trihalomethanes] (ppb)	NA	80	11.09	NA		2008	No	By-product of drinking water disinfection
Inorganic Contaminant	\$							
Antimony (ppb)	6	6	0.5	0.5	0.5	2008	No	Discharge from fire retardants; ceramics; electronics; solder; test addition.
Arsenic (ppb)	00	10	0.167	0.16	0.201	2000	No	Erosion of natural deposits;
Barium (ppm)	2	2	0.007699	0.00 7699	0.009 965	2008	No	Erosion of natural deposits
Beryllium (ppb)	4	4	0.1	0.1	0.1	2008	No	Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	0.1	0.1	0.1	2008	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints
Chromium (ppb)	100	100	0.5	0.5	0.5	2008	No	Erosion of natural deposits
Cyanide [as Free Cn] (ppb)	200	200	5	5	5	2008	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride (ppm)	4	4	0.12	0.10	0.12	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth;
Mercury [Inorganic] (ppb)	2	2	0.2	0.2	0.2	2008	No	Erosion of natural deposits;

Nitrate [measured as Nitrogen] (ppm)	10	10	0.08	0.08	0.08	2008	No	Runoff from fertilizer use; Erosion of natural deposits
Nitrite [measured as Nitrogen] (ppm)	1	1	0.02	NA		2008	No	Erosion of natural deposits
Selenium (ppb)	50	50	0.5	0.5	0,5	2008	No	Erosion of natural deposits;
Thallium (ppb)	0.5	2	0.5	0.5	0.5	2008	No	Discharge from electronics, glass,
Volatile Organic Contam	inants							
1,1,1-Trichloroethane (ppb)	200	200	0.5	NA		2008	No	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane (ppb)	3	5	0.5	NA		2008	No	Discharge from industrial chemical factories
1,1-Dichloroethylene (ppb)	7	7	0.5	NA		2008	No	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene (ppb)	70	70	0.5	NA		2008	No	Discharge from textile- finishing factories
1,2-Dichloroethane (ppb)	0	5	0.5	NA		2008	No	Discharge from industrial chemical factories
1,2-Dichloropropane (ppb)	0	5	0.5	NA		2008	No	Discharge from industrial chemical factories
Benzene (ppb)	0	5	0.5	NA		2008	No	Discharge from factories; Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	5	0.5	NA	-	2008	No	Discharge from chemical plants and other industrial activities
cis-1,2- Dichloroethylene (ppb)	70	70	0.5	NA		2008	No	Discharge from industrial chemical factories
Dichloromethane (ppb)	0	5	0.5	NA		2008	No	Discharge from pharmaceutical and chemical factories
Ethylbenzene (ppb)	700	700	0.5	NA		2008	No	Discharge from petroleum refineries
o-Dichlorobenzene (ppb)	600	600	0.5	NA		2008	No	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	0.5	NA		2008	No	Discharge from industrial chemical factories
Styrene (ppb)	100	100	0.5	NA		2008	No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachloroethylene (ppb)	0	5	0.5	NA		2008	No	Discharge from factories and dry cleaners
Toluene (ppm)	1	1	0.0005	NA		2008	No	Discharge from petroleum factories
rans-1,2- Dicholoroethylene (ppb)	100	100	0.5	NA		2008	No	Discharge from industrial chemical factories
Trichloroethylene (ppb)	0	5	0.5	NA		2008	No	Discharge from metal degreasing sites and other factories
Vinyl Chloride (ppb)	0	2	0.5	NA		2008	No	Leaching from PVC piping; Discharge from plastics factories
Xylenes (ppm)	10	10	0.5	NA		2008	No	Discharge from petroleum factories; Discharge from chemical factories

<u>Contaminants</u>	MCLG	<u>AL</u>	Your <u>Water</u>	Sample <u>Date</u>	# Samples Exceeding AL	Exceeds <u>AL</u>	Typical Source
Inorganic Contaminants	terretario e e e e e e e e e e e e e e e e e e e	Karadi is udespainipase	e francisco en estra construir de la	BOTTO NETTER AND DESCRIPTION OF	and the second s	eletera y percentago	entropies and the second s
Copper - action level at consumer taps (ppm)	1.3	1.3	0.5	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead - action level at consumer taps (ppb)	0	15	6	2008	0	No	Corrosion of household plumbing systems; Erosion of natural deposits

Undetected Contaminants

The following contaminants were monitored for, but not detected, in your water.

<u>Contaminants</u> Disinfectants & Disinfection E	MCLG or <u>MRDLG</u> By-Products	MCL or <u>MRDL</u>	Your <u>Water</u>	<u>Violation</u>	Typical Source
Haloacetic Acids (HAA5) (ppb)	NA	60	ND	No	By-product of drinking water chlorination

Term	Definition
ppm	ppm: parts per million, or milligrams per liter (mg/L)
ppb	ppb: parts per billion, or micrograms per liter (μg/L)
NA	NA: not applicable
ND	ND: Not detected
NR	NR: Monitoring not required, but recommended.

Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL .	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Lisa Noble Address: 2401 Upper Nixon Gulfport, MS 39501 228-871-2485 228-871-3116 lisa.noble@navy.mil

RECEIVED-WATER SUPPLY

Noble, Lisa L CIV NAVFAC SE, PWD Gulfport

2009 JUN 30 AM 10: 15

From:

Jeannie Stacks [JStacks@bbcgrp.com]

Sent:

Thursday, June 25, 2009 1:30 PM

To:

Noble, Lisa L CIV NAVFAC SE, PWD Gulfport

Subject:

RE: Drinking Water Annual Consumer Confidence Report

Will do. Thank you!

Jeannie Stacks

Resident Specialist/LifeWorks Coordinator Balfour Beatty Communities NCBC Gulfport | 3502 East Eighth Street | Building 452 | NCBC Gulfport, MS | 39501 P: 228-863-0424 | F: 228-863-0428

This e-mail message is intended only for the personal use of the recipient(s) named above. This message may be privileged and confidential. If you are not an intended recipient you may not review, copy or distribute this message. If you have received this message in error, please notify us immediately by e-mail and delete the original message. Thank you.

----Original Message----

From: Noble, Lisa L CIV NAVFAC SE, PWD Gulfport [mailto:lisa.noble@navy.mil]

Sent: Thursday, June 25, 2009 2:29 PM

To: Jeannie Stacks

Subject: Drinking Water Annual Consumer Confidence Report

Jeannie,

Attached is the Drinking Water Annual Consumer Confidence Report. It was published in the Seabee Courier, 25 June, and is available on the base website, https://www.cnic.navy.mil/Gulfport/Service_Organizations/Environmental/index.htm. You may also want to publish in the Military Housing Newsletter. Attached is a copy. Regards, Lisa

Lisa L. Noble Air/Water Program Manager Publics Works, Environmental Dept NCBC Gulfport 228-871-2485 DSN 868 240060

2008 NCBC Consumer Confidence Report

Is my water safe?

CBC Gulfport has water quality sampling and laboratory analysis performed in accordance with Environmental Protection Agency (EPA) and the State Department of Health.

Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Local water vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard.

Throughout the year continuous sampling is performed on the drinking water system and the analysis is completed by the state water laboratory.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

NCBC Gulfport receives raw water from the Graham Ferry aquifer. The Graham Ferry aquifer is part of the Miocene aguifer system that consist of multiple layers of sand seperated by beds of clay. The thickness of the Miocene aquifer ranges from 1000 to 4000 feet. A U.S. Geological Survey study of groundwater in Harrison County found that aquifers deeper than 500 feet were artesian. The groundwater for the NCBC Gulfport water supply is pumped from three wells. Each well is in

excess of 700 feet.

Source water assessment and its availability

Our source water assessment was prepared by the Mississippi State Department of Health and is available for review. If you would like to review this report, please call the Environmental Office at 871-2485.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). All drinking water, including bottled water, will contain small amounts of contaminant. The presence of contaminats does not indicate the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling Enironmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

The best mechanism to get involved consists of participating in Housing Residence meetings. The

2 of 12 6/9/2009 9:31 AM

most current information about the meetings may be obtained by contacting the Housing Office at 228-871-2586.

The consumer confidence report will not be mailed to NCBC customers, but is posted on the NCBC Environmental webpage. The Environmental Division encourages all customers that have concerns or questions to contact us directly.

Conservation Tips

Did you know that the average U.S. household uses approximately 350 gallons of water per day? Luckily, there are many low-cost or no-cost ways to conserve water. Water your lawn at the least sunny times of the day. Fix toilet and faucet leaks. Take short showers - a 5 minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath. Turn the faucet off while brushing your teeth and shaving; 3-5 gallons go down the drain per minute. Teach your kids about water conservation to ensure a future generation that uses water wisely.

Monitoring and Reporting of Compliance Data Violations

We are required to monotor you drinking water for specific constituents on a monthly basis. Results of regular monitoiring are an indicator of whether or not our dinking water meets health standards. Beginning January 1, 2004, the Mississippi State Department of Health (MSDH) required public water systems thas use chlorine as a primary disinfectant to monitor/test for chlorine residuals as required by the Stage 1 Disinfection By-Products Rule. Our water system failed to complete these monitoring requirements in April 2004. We did complete the monitoring requirements for bacteriological sampling that showed no coliform present. In an effort to ensure systems complete all monitoiring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

**** A MESSAGE FROM MSHD CONCERNING RADIOLOGICAL SAMPLING *****

In accordance with the Radionuclides Rule, all community public water supplies were required to sample quarterly for radionuclides beginning January 2007-December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological Health Laboratory, The Environemntal Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until notice.

Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. The Bureau of Public Water Supply is taking action to resolve this issue as quickly as possible. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. NCBC Gulfport is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi state Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact 601.576.7582.

Water Quality Data Table

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

	MCLG	MCL,						
	or	TT, or	Your	Range		Sample		
Contaminants	MRDLG	MRDL	Water	Low	<u>High</u>	<u>Date</u>	<u>Violation</u>	Typical Source

Disinfectants & Disinfection By-Products

4 of 12 6/9/2009 9:31 AM

(There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.)

Chlorine (as C12) (ppm)	4	4	0.61	0.61	0.61	2008	No	Water additive used to control microbes
TTHMs [Total Trihalomethanes] (ppb)	NA	80	11.09	NA		2008	No	By-product of drinking water disinfection
Inorganic Contaminants								
Antimony (ppb)	6	6	0.5	0.5	0.5	2008	No	Discharge from fire retardants; ceramics; electronics; solder; test addition.
Arsenic (ppb)	0	10	0.167	0.167	0.201	2000	No	Erosion of natural deposits;
Barium (ppm)	2	2	0.007699	0.007699	0.009965	2008	No	Erosion of natural deposits
Beryllium (ppb)	4	4	0.1	0.1	0.1	2008	No	Discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	5	5	0.1	0.1	0.1	2008	No	Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries; runoff from waste batteries and paints

Chromium (ppb)	100	100	0.5	0.5	0.5	2008	No	Erosion of natural deposits
Cyanide [as Free Cn] (ppb)	200	200	5	5	5	2008	No	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories
Fluoride (ppm)	4	4	0.12	0.102	0.12	2008	No	Erosion of natural deposits; Water additive which promotes strong teeth;
Mercury [Inorganic] (ppb)	2	2	0.2	0.2	0.2	2008	No	Erosion of natural deposits;
Nitrate [measured as Nitrogen] (ppm)	10	10	0.08	0.08	0.08	2008	No	Runoff from fertilizer use; Erosion of natural deposits
Nitrite [measured as Nitrogen] (ppm)	1	1	0.02	NA		2008	No	Erosion of natural deposits
Selenium (ppb)	50	50	0.5	0.5	0.5	2008	No	Erosion of natural deposits;
Thallium (ppb)	0.5	2	0.5	0.5	0.5	2008	No	Discharge from electronics, glass,

Volatile Organic Contaminants

1,1,1-Trichloroethane (ppb)	200	200	0.5	NA	2008	No	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane (ppb)	3	5	0.5	NA	2008	No	Discharge from industrial chemical factories
1,1-Dichloroethylene (ppb)	7	7	0.5	NA	2008	No	Discharge from industrial chemical factories
1,2,4-Trichlorobenzene (ppb)	70	70	0.5	NA	2008	No	Discharge from textile-finishing factories
1,2-Dichloroethane (ppb)	0	5	0.5	NA	2008	No	Discharge from industrial chemical factories
1,2-Dichloropropane (ppb)	0	5	0.5	NA	2008	No	Discharge from industrial chemical factories
Benzene (ppb)	0	5	0.5	NA	2008	No	Discharge from factories; Leaching from gas storage tanks and landfills
Carbon Tetrachloride (ppb)	0	5	0.5	NA	2008	No	Discharge from chemical plants and other industrial activities
cis-1,2-Dichloroethylene (ppb)	70	70	0.5	NA	2008	No	Discharge from industrial chemical

							factories
Dichloromethane (ppb)	0	5	0.5	NA	2008	No	Discharge from pharmaceutical and chemical factories
Ethylbenzene (ppb)	700	700	0.5	NA	2008	No	Discharge from petroleum refineries
o-Dichlorobenzene (ppb)	600	600	0.5	NA	2008	No	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	75	75	0.5	NA	2008	No	Discharge from industrial chemical factories
Styrene (ppb)	100	100	0.5	NA	2008	No	Discharge from rubber and plastic factories; Leaching from landfills
Tetrachloroethylene (ppb)	0	5	0.5	NA	2008	No	Discharge from factories and dry cleaners
Toluene (ppm)	1	1	0.0005	NA	2008	No	Discharge from petroleum factories
trans-1,2-Dicholoroethylene (ppb)	100	100	0.5	NA	2008	No	Discharge from industrial chemical factories

0		5	0.5	NA	2008	No	Discharge from metal degreasing sites and other factories
0		2	0.5	NA	2008	No	Leaching from PVC piping; Discharge from plastics factories
10		10	0.5	NA	2008	No	Discharge from petroleum factories; Discharge from chemical factories
		Your	Sample	# Samples	Exceeds		
<u>MCLG</u>	AL	<u>Water</u>	<u>Date</u>	Exceeding AL	AL	Typical S	ource
1.3	1.3	0.5	2008	0	No	plumbing	systems; Erosion
0	15	6	2008	0	No		of household systems; Erosion deposits
	0 10 <u>MCLG</u>	0 10 MCLG AL 1.3 1.3	0 2 10 10 Your MCLG AL Water	0 2 0.5 10 10 0.5 Your Sample MCLG AL Water Date	0 2 0.5 NA 10 10 0.5 NA Your Sample #Samples MCLG AL Water Date Exceeding AL 1.3 1.3 0.5 2008 0	0 2 0.5 NA 2008 10 10 0.5 NA 2008 Your Sample # Samples Exceeds MCLG AL Water Date Exceeding AL AL 1.3 1.3 0.5 2008 0 No	0 2 0.5 NA 2008 No 10 10 0.5 NA 2008 No Your Sample # Samples Exceeds MCLG AL Water Date Exceeding AL AL Typical Samples 1.3 1.3 0.5 2008 0 No Corrosion plumbing of natural 0 15 6 2008 0 No Corrosion plumbing plumbing plumbing of natural

Undetected Contaminants

The following contaminants were monitored for, but not detected, in your water.

MCLG MCL

or or Your

<u>Contaminants</u> <u>MRDLG MRDL Water Violation Typical Source</u>

Disinfectants & Disinfection By-Products

Haloacetic Acids (HAA5) NA 60 ND No By-product of drinking water (ppb) chlorination

Unit Descriptions				
<u>Term</u>	<u>Definition</u>			
ppm	ppm: parts per million, or milligrams per liter (mg/L)			
ppb	ppb: parts per billion, or micrograms per liter (µg/L)			
NA	NA: not applicable			
ND	ND: Not detected			
NR	NR: Monitoring not required, but recommended.			

Important Drinking Water Definitions							
Term	Definition						

MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

For more information please contact:

Lisa Noble

Address:

2401 Upper Nixon

Gulfport, MS 39501

228-871-2485

228-871-3116

lisa.noble@navy.mil

Cockrell, Joan

From: Noble, Lisa L CIV NAVFAC SE, PWD Gulfport [lisa.noble@navy.mil]

Sent: Friday, May 29, 2009 10:25 AM

To: Cockrell, Joan
Subject: Seabee Base CCR
Signed By: lisa.noble@navy.mil

NCBC Gulfport.htm

Joan,

Thanks for taking time to discuss the CCR with me this morning. As we discussed, I am requesting a review of our CCR prior to publication. Please let me know if changes are required.

Thanks,

Lisa

Lisa L. Noble Air/Water Program Manager Publics Works, Environmental Dept NCBC Gulfport 228-871-2485 DSN 868